59 research outputs found

    Etude de mĂ©canismes molĂ©culaires de l’évolution

    Get PDF
    Les travaux initiaux du laboratoire Ă©taient orientĂ©s vers la description des mĂ©canismes de l’adaptation de protĂ©ines isolĂ©es des Archaea halophiles. En analysant un grand nombre de donnĂ©es biochimiques, structurales au regard du concept de l’évolution, j’ai pu Ă©tablir l’existence d’une nouvelle famille enzymatique : les LDH-like Malate DĂ©shydrogĂ©nase dont je suis devenu un rĂ©fĂ©rent :(http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=cd01339).Toutes ces donnĂ©es ont Ă©tĂ© croisĂ©es Ă  une Ă©tude phylogĂ©nĂ©tique qui m’a permis de dĂ©crire l’histoire Ă©volutive de la super famille des malates (MalDH) et des lactates dĂ©shydrogĂ©nases (LDH). Cette famille est dĂ©sormais considĂ©rĂ©e comme un vivier extrĂȘmement riche pour trouver de nombreuses enzymes prĂ©sentant des caractĂ©ristiques spĂ©cifiques d’adaptation Ă  diverses contraintes physico-chimiques. Le dossier permet de voir que la combinaison de diverses mĂ©thodologies appliquĂ©es Ă  l’étude de diffĂ©rentes enzymes (MalDH et LDH) permet de dĂ©cortiquer en grands dĂ©tails les mĂ©canismes de l’adaptation. Les rĂ©sultats obtenus font que cette famille enzymatique est une de celles qui est actuellement la mieux comprise en terme de relation repliement-structure-fonction-dynamique et Ă©volution.Dans une deuxiĂšme partie, j’exposerai briĂšvement, comment ma rĂ©flexion a permis d’aller vers la caractĂ©risation d’une nouvelle famille de dĂ©shydrogĂ©nase qui prĂ©sente un nouveau motif de repliement, diffĂ©rent des dĂ©shydrogĂ©nases connues jusqu’à prĂ©sent. Je montrerai aussi qu’il est vraisemblablement possible d’aller sonder les propriĂ©tĂ©s structurales d’une protĂ©ine ayant Ă©chappĂ© au contrĂŽle du repliemen

    Asparaginyl-tRNA synthetase from the Escherichia coli temperature-sensitive strain HO202 A proline replacement in motif 2 is responsible for a large increase in Km for asparagine and ATP

    Get PDF
    AbstractThe Escherichia coli K12 mutant gene, asnS40, coding for asparaginyl-tRNA synthetase (AsnRS) in the temperature-sensitive strain HO202, was isolated from genomic DNA using the Polymerase Chain Reaction. DNA sequencing revealed that the mutant enzyme differs from the wild-type AsnRS by two amino acids, but only the P231L replacement leads to a change in aminoacylation activity. In the ATP-PPi exchange reaction at 37°C the purified P231L enzyme has a more than 50-fold increased Km value for asparagine compared to the wild-type enzyme, while the Km value for ATP is increased 8-fold. In the aminoacylation reaction the mutant enzyme shows also significantly increased Km values for asparagine and ATP. Interestingly Pro-231 is part of the conserved motif 2 in class II aminoacyl-tRNA synthetases (Eriani, G., Delarue, M., Poch, O., Gangloff, J. and Moras, D. (1990) Nature 347, 203–206), indicating that this motif might be involved in all class II enzymes in amino acid activation

    Phylogenetics and biochemistry elucidate the evolutionary link between l-malate and l-lactate dehydrogenases and disclose an intermediate group of sequences with mix functional properties

    No full text
    International audienceThe NAD(P)-dependent malate dehydrogenases (MDH) (EC 1.1.1.37) and NAD-dependent lactate dehydrogenases (LDH) (EC. 1.1.1.27) form a large super-family that has been characterized in organisms belonging to the three Domains of Life. MDH catalyses the reversible conversion of the oxaloacetate into malate, while LDH operates at the late stage of glycolysis by converting pyruvate into lactate. Phylogenetic studies proposed that the LDH/MDH superfamily encompasses five main groups of enzymes. Here, starting from 16,052 reference proteomes, we reinvestigated the relationship between MDH and LDH. We showed that the LDH/MDH superfamily encompasses three main families: MDH1, MDH2, and a large family encompassing MDH3, LDH, and L-2-hydroxyisocaproate dehydrogenases (HicDH) sequences. An in-depth analysis of the phylogeny of the MDH3/LDH/HicDH family and of the nature of three important amino acids located within the catalytic site and involved in binding and substrate discrimination, revealed a large group of sequences displaying unexpected combinations of amino acids at these three critical positions. This group branched in-between MDH3 and LDH sequences. The functional characterization of several enzymes from this intermediate group disclosed a mix of functional properties, indicating that the MDH3/LDH/HicDH family is much more diverse than previously thought, and blurred the frontier between MDH3 and LDH enzymes. Present-days enzymes of the intermediate group are a valuable material to study the evolutionary steps that led to functional diversity and emergence of allosteric regulation within the LDH/MDH superfamily

    Protein thermal stability

    No full text
    International audienc

    Nucleotide sequence of Escherichia coli

    No full text

    Stability against Denaturation Mechanisms in Halophilic Malate Dehydrogenase "Adapt" to Solvent Conditions

    No full text
    International audienceMalate dehydrogenase from Haloarcula marismortui (hMDH) is active, soluble and mildly unstable in an unusually wide range of salt conditions and temperatures, making it a particularly interesting model for the study of solvent effects on protein stability; Its denaturation (loss of activity due to concomitant dissociation and unfolding) kinetics was studied as a function of temperature and concentration of NaCl, potassium phosphate or ammonium sulphate in H2O or (H2O)-H-2. A transition-state-theory analysis was applied to the data. In all cases, stability (resistance to denaturation) increased with increasing salt concentration, and when (H2O)-H-2 replaced H2O. Each salt condition was associated with a particular energy regime that dominated stability. In NaCl/H2O, a positive enthalpy term, Delta H-not equal 0 , always dominated the activation free energy of denaturation, Delta G(not equal 0) . In potassium phosphate/H2O and ammonium sulphate/H2O, on the other hand, stability was dominated by a negative activation entropy Delta S-not equal 0, and Delta H-not equal 0 changed sign between 10 degrees C and 20 degrees C, consistent With a strong hydrophobic effect contribution, in these salting-out solvents. Decreasing stability at low temperatures, favouring cold denaturation, was observed. Replacing H2O by (H2O)-H-2 strengthened the hydrophobic effect in all conditions. As a consequence, conditions were found in which hMDH was not halophilic; below 10 degrees C, it was stable in approximate to 0.1 M NaCl/(H2O)-H-2. The solution structure and preferential solvent interactions of hMDH in H2O or (H2O)-H-2 solvents containing NaCl were studied by densimetry and neutron scattering. Despite the different stability of the protein in H2O or (H2O)-H-2, an experimentally identical invariant solution particle was formed in both solvents. It had a total volume of 1.165 cm(3) g(-1) and bound about 0.4 g of H2O (0.44 g of (H2O)-H-2) and about 0.08 g NaCl g protein. The impact of these results on a stabilisation model for hMDH, involving ion binding, is discussed

    Intracellular molecular dynamics studied by neutron scattering

    No full text
    Incoherent neutron scattering experiments have produced important insights into intracellular molecular dynamics in vivo. Selected results highlight the role of water dynamics in cancer and brain cells, as well as cellular adaptation through the evolution of appropriate molecular dynamics, in order to respond to environmental challenges

    MĂ©canismes molĂ©culaires d'adaptation aux conditions physico-chimiques extrĂȘmes dans la famille des lactate-malate dĂ©shydrogĂ©nases

    No full text
    La vie est prĂ©sente partout, ou presque, sur Terre, et notamment dans des environnements considĂ©rĂ©s comme extrĂȘmes. Ces organismes extrĂȘmophiles, non contents de subsister sous ces contraintes physico-chimiques extrĂȘmes, s'y complaisent. Plusieurs mĂ©canismes adaptatifs, Ă  divers niveaux de l'organisation cellulaire, ont Ă©tĂ© mis en place. Les Ă©tudes prĂ©sentĂ©es ici s'intĂ©ressent aux mĂ©canismes d'adaptation molĂ©culaire des protĂ©ines en utilisant la famille des lactate-malate dĂ©shydrogĂ©nases comme modĂšle. Il semblerait qu'une rĂ©organisation des interactions au sein de la structure assure la stabilitĂ©, la solubilitĂ© et l'activitĂ© de la protĂ©ine sous cette contrainte physico-chimique extrĂȘme.Dans une premiĂšre partie, les propriĂ©tĂ©s biochimiques et structurales des lactates dĂ©shydrogĂ©nases de la bactĂ©rie thermophile Thermus thermophilus (TtLDH1 de la bactĂ©rie mĂ©sophile Deinococcus radiodurans (DrLDH) et du poisson psychrophile de Champsocepha/us gunnari (CgLDH) ont Ă©tĂ© dĂ©terminĂ©es. Les deux premiĂšres ont Ă©tĂ© comparĂ©es pour Ă©tudier la transition thermophile/mĂ©sophile. La derniĂšre a Ă©tĂ© comparĂ©e Ă  la LDH de Squa/us acanthias (SaLDH) pour comprendre la transition mĂ©sophile/psychrophile. Peu de substitutions semblent ĂȘtre Ă  l'origine des diffĂ©rences de propriĂ©tĂ©s thermiques entre ces enzymes. Cette hypothĂšse a pu ĂȘtre vĂ©rifiĂ©e par la caractĂ©risation d'un mutant de TtLDH. Cinq substitutions judicieusement choisies ont permis d'altĂ©rer ses propriĂ©tĂ©s thermiques.L'adaptation molĂ©culaire aux fortes concentrations en sel a Ă©tĂ©, pendant longtemps, Ă©tudiĂ©e en utilisant la malate dĂ©sydrogĂ©nase de Ha/oarcu/a marismortui (HmMalDH). Nous prĂ©sentons ici les caractĂ©ristiques biochimiques et structurales de la malate dĂ©sydrogĂ©nase issue de Sa/inibacter ruber (SrMaIDH), la seule bactĂ©rie halophile extrĂȘme connue Ă  ce jour. Les propriĂ©tĂ©s de cette enzyme semblent intermĂ©diaires entre une enzyme non halophile et une enzyme totalement efficace aux fortes concentrations en sel. Cela a permis, pour la premiĂšre fois, de proposer un dĂ©couplage des diffĂ©rents effets affectant la stabilitĂ© conformationnelle,l'activitĂ© enzymatique et la solubilitĂ©. Enfin, l'irradiation des cristaux de protĂ©ine provoque des dommages au sein de la structure de la macromolĂ©cule, et touche notamment les groupements carboxyle des chaĂźnes latĂ©rales des rĂ©sidus acides. La forme apo (enzyme seule) et le complexe ternaire (enzyme :NADH :analogue de substrat) de TtLDH ont Ă©tĂ© irradiĂ©s et, Ă  dose absorbĂ©e Ă©quivalente, l'amplitude des dommages entre les deux formes a Ă©tĂ© comparĂ©e. La fixation du cofacteur et du substrat ne protĂšge pas des radiations le rĂ©sidu acide prĂ©sent dans le site actif.Life is found everywhere, or almost, on earth and particularly in environments considered as extreme. These extremophilic organisms do not only subsist, but thrive in these conditions. Several adaptative mechanisms, at different cellular levels, have beendevelopped. Our studies focus on molecular mechanisms of proteins adaptation, using the lactate-malate dehydrogenases family as model. An intramolecular reorganization of interactions seems to be sufficient to en sure conformational stability, enzymatic activity and solubility of the protein in the se eXtreme conditions.First, biochemical and structural properties of lactate dehydrogenases from the thermophilic bacterium Thermus thermophilus (TtLDH), the mesophilic bacterium Deinococcus radiodurans (DrLDH) and the psychrophilic fish Champsocepha/us gunnari (CgLDH) have been determined. The first two have been compared to understand the thermophilic/mesophilic transition. The latter has been compared to the LDH from Squa/us acanthias (SaLDH) to study the mesophilic/psychrophilc transition. Few substitutions seems to be responsible for the differences in thermal properties between these enzymes. This hypothesis has been validated using a molecular variant of TtLDH. Five amino acid substitutions have modified its thermal properties.Molecular adaptation to high salt concentrations has been studied for a long time using the Ha/oarcu/a marismortui malatedehydrogenase (HmMaIDH). We present here the biochemical and structural properties of the malate dehydrogenase tTom Sa/inibacter ruber (SrLDH), the only extreme halophilic bacterium known to date. Properties of this enzyme appear to be 'intermediate' between a non halophilic enzyme and a fully active enzyme in high salt. For the first time, different effects that modiry conformational stability, enzymatic activity or solubility have been uncoupled.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF
    • 

    corecore